Rigorous estimation of the speed of convergence to equilibrium.

S. Galatolo

Dip. Mat, Univ. Pisa

Computation in Dynamics, ICERM, 2016

 Many questions on the statistical behavior of a dynamical system are related to the speed of convergence to equilibrium: a measure of the speed of convergence to the limit

$$L^n m \rightarrow \mu$$
.

- We will see a tool for the **rigorous** computer aided **explicit** estimation of this rate of convergence and one example of application to the computation of the diffusion coefficient;
- Topics mainly from joint works with: W. Bahsoun, M. Monge, I. Nisoli, X. Niu, B. Saussol.

Dynamics and the evolution of a measure The transfer operator

Let us consider a metric space X with a dynamics defined by $T : X \to X$. Let us also consider the space PM(X) of probability measures on X. Define the function

$$L: PM(X) \to PM(X)$$

in the following way: if $\mu \in PM(X)$ then:

$$L\mu(A) = \mu(T^{-1}(A))$$

• Considering measures with sign (SM(X)) or complex valued measures we have a vector space and L is linear.

Dynamics and the evolution of a measure The transfer operator

Let us consider a metric space X with a dynamics defined by $T : X \to X$. Let us also consider the space PM(X) of probability measures on X. Define the function

$$L: PM(X) \to PM(X)$$

in the following way: if $\mu \in PM(X)$ then:

$$L\mu(A) = \mu(T^{-1}(A))$$

- Considering measures with sign (SM(X)) or complex valued measures we have a vector space and L is linear.
- Invariant measures are fixed points of the transfer operator L.

Dynamics and the evolution of a measure The transfer operator

Let us consider a metric space X with a dynamics defined by $T : X \to X$. Let us also consider the space PM(X) of probability measures on X. Define the function

$$L: PM(X) \to PM(X)$$

in the following way: if $\mu \in PM(X)$ then:

$$L\mu(A) = \mu(T^{-1}(A))$$

- Considering measures with sign (SM(X)) or complex valued measures we have a vector space and L is linear.
- Invariant measures are fixed points of the transfer operator L.
- Many results come from the understanding of the properties of the action of this operator on spaces of suitably regular measures.

• Consider two spaces of measures with sign $B_s \subseteq B_w$, with norms $|| ||_s \ge || ||_w$ and the set of zero average measures

$$V = \{ v \in \mathcal{B}_s | v(X) = 0 \}$$

· · · · · · · · ·

Convergence to equilibrium

• Consider two spaces of measures with sign $B_s \subseteq B_w$, with norms $|| ||_s \ge || ||_w$ and the set of zero average measures

$$V = \{ \nu \in \mathcal{B}_s | \nu(X) = 0 \}$$

• We say that L has convergence to equilibrium with speed Φ if for each $g \in V$

$$||L^ng||_w \leq \Phi_1(n) ||g||_s$$

伺下 イヨト イヨト

Convergence to equilibrium

• Consider two spaces of measures with sign $B_s \subseteq B_w$, with norms $|| ||_s \ge || ||_w$ and the set of zero average measures

$$V = \{ v \in \mathcal{B}_s | v(X) = 0 \}$$

- We say that L has convergence to equilibrium with speed Φ if for each $g \in V$ $||L^ng||_w \leq \Phi_1(n) ||g||_s$
- e.g. $||L^ng||_w \leq C\lambda^{-n}||g||_s$

Convergence to equilibrium

• Consider two spaces of measures with sign $B_s \subseteq B_w$, with norms $|| ||_s \ge || ||_w$ and the set of zero average measures

$$V = \{ \nu \in \mathcal{B}_s | \nu(X) = 0 \}$$

• We say that L has convergence to equilibrium with speed Φ if for each $g \in V$

$$||L^ng||_w \leq \Phi_1(n) ||g||_s$$

- e.g. $||L^ng||_w \le C\lambda^{-n}||g||_s$
- Let us consider a starting probability measure v ∈ B_s and µ invariant, since (Lⁿv − µ) ∈ V, this estimates the speed

$$||L^n\nu-\mu||_w\to 0$$

個 と く ほ と く ほ と …

• Consider B_s and the set of zero average measures

$$V = \{ \nu \in \mathcal{B}_s | \nu(X) = 0 \}$$

· · · · · · · · ·

• Consider B_s and the set of zero average measures

$$V = \{ \nu \in \mathcal{B}_s | \nu(X) = 0 \}$$

• We say that V has speed of contraction Φ if for each $g \in V$

$$||L^ng||_s \leq \Phi_2(n) ||g||_s$$

> < E > < E >

• Consider B_s and the set of zero average measures

$$V = \{ \nu \in \mathcal{B}_s | \nu(X) = 0 \}$$

• We say that V has speed of contraction Φ if for each $g \in V$

$$||L^ng||_s \leq \Phi_2(n) ||g||_s$$

• e.g. $||L^ng||_s \leq C\lambda^{-n}||g||_s$

> < E > < E >

Speed of convergence to equilibrium

```
||L^ng||_w \leq \Phi_1(n) ||g||_s
```

```
||L^ng||_s \le \Phi_2(n) \ ||g||_s
```

• We will see that:

a low resolution information coming from a computer estimation

+ the knowledge of the fine scale behavior of the transfer operator, due to its regularizing action on a suitable space

= information on the rate of convergence.

個 と く ヨ と く ヨ と

 $\bullet\,$ Suppose L satisfies a Lasota Yorke (Doeblin Fortet) inequality: there is $\lambda_1 < 1 \;$ s.t.

 $||L^n\nu||_s \leq A\lambda_1^n||\nu||_s + B||\nu||_w.$

• Suppose L satisfies a Lasota Yorke (Doeblin Fortet) inequality: there is $\lambda_1 < 1~$ s.t.

$$||L^n\nu||_s \le A\lambda_1^n||\nu||_s + B||\nu||_w.$$

• This is satisfied for example with $|| ||_s = || ||_{BV}$ and $|| ||_w = || ||_1$ for piecewise expanding maps

• Suppose L satisfies a Lasota Yorke (Doeblin Fortet) inequality: there is $\lambda_1 < 1~$ s.t.

$$||L^n\nu||_s \leq A\lambda_1^n||\nu||_s + B||\nu||_w.$$

- This is satisfied for example with $|| ||_s = || ||_{BV}$ and $|| ||_w = || ||_1$ for piecewise expanding maps
- and with suitable anisotropic norms for (piecewise) hyperbolic systems.

・ 同 ト ・ ヨ ト ・ ヨ ト

• Consider a projection π_{δ} on a finite dimensional space. Suppose

 $||\pi_{\delta}f - f||_{w} \leq C\delta||f||_{s}.$

▲圖▶ ▲ 圖▶ ▲ 圖▶ …

• Consider a projection π_{δ} on a finite dimensional space. Suppose

$$||\pi_{\delta}f - f||_{w} \leq C\delta||f||_{s}.$$

• Supppose π_{δ} and L are weak contractions for the norm $|| ||_w$

個 と くき とくきょ

• Consider a projection π_δ on a finite dimensional space. Suppose

$$||\pi_{\delta}f - f||_{w} \leq C\delta||f||_{s}.$$

- Supppose π_{δ} and L are weak contractions for the norm $|| ||_w$
- Define the finite rank approximation L_{δ} of L as

$$L_{\delta}=\pi_{\delta}L\pi_{\delta}.$$

伺 ト イヨ ト イヨト

• Consider a projection π_δ on a finite dimensional space. Suppose

$$||\pi_{\delta}f - f||_{w} \leq C\delta||f||_{s}.$$

- Supppose π_{δ} and L are weak contractions for the norm $|| ||_{w}$
- Define the finite rank approximation L_{δ} of L as

$$L_{\delta} = \pi_{\delta} L \pi_{\delta}.$$

• Suppose that there is n₁ such that

$$\forall v \in V, \ ||L_{\delta}^{n_1}(v)||_{w} \le \lambda_2 ||v||_{w}$$
(1)

with $\lambda_2 < 1$

• Space X discretized by a partition I_{δ}

- 4 同 6 4 日 6 4 日 6

- Space X discretized by a partition I_{δ}
- Corresponding L_δ can be seen as: let F_δ be the σ−algebra associated to I_δ, then:

$$\pi_{\delta} : SM(X) \to L^1(X)$$
 (2)

$$\pi_{\delta}(g) = \mathbf{E}(g|F_{\delta}) \tag{3}$$

$$L_{\delta}(f) = \pi_{\delta} L \pi_{\delta}$$
(4)

- Space X discretized by a partition I_{δ}
- Corresponding L_δ can be seen as: let F_δ be the σ-algebra associated to I_δ, then:

$$\pi_{\delta} : SM(X) \to L^{1}(X)$$
 (2)

$$\pi_{\delta}(g) = \mathbf{E}(g|F_{\delta}) \tag{3}$$

$$L_{\delta}(f) = \pi_{\delta} L \pi_{\delta}$$
(4)

System approximated by a Markov Chain with probabilities

$$P_{ij} = m(T^{-1}(I_j) \cap I_i) / m(I_i)$$

- Space X discretized by a partition I_{δ}
- Corresponding L_δ can be seen as: let F_δ be the σ-algebra associated to I_δ, then:

$$\pi_{\delta} : SM(X) \to L^1(X)$$
 (2)

$$\pi_{\delta}(g) = \mathbf{E}(g|F_{\delta}) \tag{3}$$

$$L_{\delta}(f) = \pi_{\delta} L \pi_{\delta}$$
 (4)

System approximated by a Markov Chain with probabilities

$$P_{ij} = m(T^{-1}(I_j) \cap I_i) / m(I_i)$$

 Much literature on the (more or less rigorous) approximation of invariant measures and other by this method (e.g. Bose, Bahsoun, Ding, Froyland, Keane, Li, Murray, Young, Zhou...)

Lemma

Under the previous assumption L_{δ} , L satisfy an approximation inequality: $\exists C, D$ such that $\forall v, \forall n \ge 0$:

$$||(L_{\delta}^n - L^n)\nu||_{w} \leq \delta(C||\nu||_{s} + nD||\nu||_{w}).$$

· · · · · · ·

(5)

Putting together in a system Lasota-Yorke and the previous lemma: starting measure $g_0 \in V$, let us denote $g_{i+1} = L^{n_1}g_i$.

$$\begin{cases} ||\mathcal{L}^{n_1}g_i||_s \le A\lambda_1^{n_1}||g_i||_s + B||g_i||_w \\ ||\mathcal{L}^{n_1}g_i||_w \le ||\mathcal{L}^{n_1}_{\delta}g_i||_w + \delta(C||g_i||_s + n_1D||g_i||_w) \end{cases},$$
(6)

$$\begin{cases} ||\mathcal{L}^{n_1}g_i||_s \le A\lambda_1^{n_1}||g_i||_s + B||g_i||_w \\ ||\mathcal{L}^{n_1}g_i||_w \le \lambda_2||g_i||_w + \delta(C||g_i||_s + n_1D||g_i||_w) \end{cases}$$

★聞▶ ★ 国▶ ★ 国▶

Compacting it in a vector notation,

$$\begin{pmatrix} ||g_{i+1}||_s \\ ||g_{i+1}||_w \end{pmatrix} \preceq \begin{pmatrix} A\lambda_1^{n_1} & B \\ \delta C & \delta n_1 D + \lambda_2 \end{pmatrix} \begin{pmatrix} ||g_i||_s \\ ||g_i||_w \end{pmatrix}$$
(7)

here \leq indicates the component-wise \leq relation (both coordinates are less or equal).

< 回 ト < 三 ト < 三 ト

Let $\mathcal{M} = \begin{pmatrix} A\lambda_1^{n_1} & B \\ \delta C & \delta n_1 D + \lambda_2 \end{pmatrix}$. What said above allows to bound $||g_i||_s$ and $||g_i||_w$ by a sequence

$$\left(\begin{array}{c}||g_i||_s\\||g_i||_w\end{array}\right) \preceq \mathcal{M}^i \left(\begin{array}{c}||g_0||_s\\||g_0||_w\end{array}\right)$$

which can be computed explicitly. This gives a way have an explicit estimate on the speed of convergence for the norms $|| ||_s$ and $|| ||_w$ at a given time.

$$||\mathcal{L}^{kn_1}g||_s \leq C_1 \rho^k ||g||_s.$$

• A similar approach allows the estimation of escape rates

ロトメ聞とメミトメミト・ミ

1-d Lorenz map

$$T(x) = \begin{cases} \theta \cdot |x - 1/2|^{\alpha} & 0 \le x < 1/2 \\ 1 - \theta \cdot |x - 1/2|^{\alpha} & 1/2 < x \le 1 \end{cases}$$

with $\alpha = 57/64$ and $\theta = 109/64$. *L* is the transfer operator associated to $F = T^4$

The matrix that corresponds to our data is such that

$$M \preceq \begin{bmatrix} 0.2915 & 4049 \\ 7.75 \cdot 10^{-8} & 0.058 \end{bmatrix}.$$

|山下 (日) (日)

We have the following estimates:

$$\|L^{k}g\|_{BV} \leq (16356) \cdot (0.387)^{\left\lfloor \frac{k}{10} \right\rfloor} ||g||_{BV}.$$
$$\|L^{k}g\|_{L^{1}} \leq (4050) \cdot (0.387)^{\left\lfloor \frac{k}{10} \right\rfloor} ||g||_{BV}.$$

We can also use the coefficients of the powers of the matrix (computed using interval arithmetics) to obtain upper bounds as in the following table:

$$\begin{array}{ll} \text{iterations} & \text{bound for } ||L^hg||_1 \\ h = 20 & 3 \cdot 10^{-6} ||g||_{BV} + 3.5 \cdot 10^{-2} ||g||_1 \\ h = 40 & 5 \cdot 10^{-7} ||g||_{BV} + 5.1 \cdot 10^{-3} ||g||_1 \\ h = 60 & 7 \cdot 10^{-8} ||g||_{BV} + 7.6 \cdot 10^{-4} ||g||_1 \\ h = 80 & 10^{-8} ||g||_{BV} + 1.2 \cdot 10^{-4} ||g||_1 \end{array}$$

< 同 > < 三 > < 三 >

Theorem (Diffusion coefficient for the Lanford map)

Let

$$T(x) = 2x + \frac{1}{2}x(1-x) \pmod{1}.$$
 (8)

(a) T admits a unique absolutely continuous invariant measure v and if ψ is a function of bounded variation the Central Limit Theorem holds:

$$\frac{1}{\sqrt{n}}\left(\sum_{i=0}^{n-1}\psi(T^{i}x)-n\int_{I}\psi d\nu\right)\xrightarrow{law}\mathcal{N}(0,\sigma^{2}).$$

(b) For $\psi = x^2$ the diffusion coefficient $\sigma^2 \in [0.3458, 0.4152]$.

• σ^2 is known to have the following expression

$$\sigma^{2} := \int_{I} \hat{\psi}^{2} h dm + 2 \sum_{i=1}^{\infty} \int_{I} L^{i}(\hat{\psi}h) \hat{\psi} dm, \qquad (9)$$

where

$$\hat{\psi}:=\psi- extsf{avg}$$
 and $extsf{avg}:=\int_I\psi extsf{hdm}.$

Applying the above technique to the Lanford map one obtains:

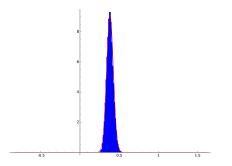
$$\|L^{28k}(\hat{\psi}h)\|_{L^1} \le (1.007) \times 0.05^k \|\hat{\psi}h\|_{BV}$$

• Thus we can find / such that

$$\sum_{i=I}^{\infty} \int_{I} L^{i}(\hat{\psi}h) \hat{\psi} dm$$

is as small as wanted. Reducing the estimation to a finite sum.

Taking 200 iterates and 20000 starting points



compare the distribution of deviations from averages with the estimated normal distibution.

- S. Galatolo, I. Nisoli, B. Saussol An elementary way to rigorously estimate convergence to equilibrium and escape rates J. Comp. Dyn. (2015)
- W. Bahsoun, S. Galatolo, I. Nisoli, X. Niu *Rigorous approximation of diffusion coefficients for expanding maps.* J. Stat Phys. (2016)